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ABSTRACT A processing of recent experimental data by
Nagib and Hites [Nagib, H. & Hites, M. (1995) AIAA paper
95-0786, Reno, NV) shows that the f low in a zero-pressure-
gradient turbulent boundary layer, outside the viscous sub-
layer, consists of two self-similar regions, each described by a
scaling law. The results concerning the Reynolds-number
dependence of the coefficients of the wall-region scaling law
are consistent with our previous results concerning pipe f low,
if the proper definition of the boundary layer Reynolds
number (or boundary layer thickness) is used.

The currently dominant engineering theory of the zero-
pressure-gradient turbulent boundary layer was proposed by
Coles (1). An exposition, closely following the original work,
can be found in Monin and Yaglom (2) and a discussion can
be found in the instructive paper by Fernholz and Finley (3).
We do not reproduce this theory here, noting only that beside
some invariance assumptions, common to semi-empirical the-
ories of turbulence, Coles’ theory introduces additional pa-
rameters and approximations, convenient for engineering
calculations but without a direct physical meaning. An instruc-
tive survey of the general properties of turbulent boundary
layers can be found in Sreenivasan (4).

In the present paper we start by a very simple processing of
recent experimental data of Nagib and Hites (5, 6). Our study
indicates that the flow outside of the viscous sublayer consists
basically of two self-similar regions: the inner region (wall
region) and an outer region. In both regions the mean velocity
distribution can be very accurately described by scaling (pow-
er) laws, different for the inner and the outer regions. The
boundaries between the inner and outer regions and the
boundary between the outer region of the boundary layer and
the free stream flow are rather sharp. We show further that the
scaling law for the inner region is almost identical to the scaling
law proposed for pipes (7, 8). However, to reveal this identity
a redefinition of the Reynolds number for the boundary layer
was needed.

Processing of the Experimental Data

The experimental data of Nagib and Hites (5, 6) as well as
earlier data of Naguib (6), are presented in Fig. 1. (We are
most grateful to H. Nagib and M. Hites who supplied us with
tables.) To reveal the scaling laws, we simply presented their
results in double-logarithmic rather than the semi-logarithmic
coordinates which are commonly used for processing such
data. The results are presented in Fig. 2 a–h. The instructive
common feature of these figures is that outside the viscous
sublayer the velocity distribution in the flow is represented by
a broken line—a combination of two different scaling (power)
laws separated by a sharp boundary.

The parameters of the scaling laws are presented in Table 1:
the scaling law in the inner region is assumed to have the form
u 5 Aha; in the outer region the assumption is u 5 Bhb. Here
the standard notations are used:

f 5
u
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, h 5
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n
, Reu 5
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n
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where u is the mean velocity; up is =tyr, the dynamic or
friction velocity; t is the shear stress at the wall; n is the
kinematic viscosity; r is the density of the fluid; u is the
momentum displacement thickness; and U is the free-stream
velocity.

We see that the slope a and the coefficient of the inner
scaling law A are slightly Re-dependent. For the outer scaling
law the Re dependence, if it exists, is weaker. The power b is
close to 0.2 5 1y5. The evidence therefore shows that the
boundary layer between the viscous sublayer and the free
stream consists of two different self-similar regions.

A Comparison with the Wall Law of the Flow in the Pipes
and an Effective Reynolds Number for the Turbulent
Boundary Layer

To interpret our result we turn to the scaling for the interme-
diate region of pipe flow—the region between the viscous
sublayer and close vicinity of the axis (7, 8). It has the form
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[2]

where #u is the average velocity (total discharge divided by the
cross-section’s area) and d is the diameter of the pipe.

Intuitively it is clear that at moderate values of h the scaling
law (2) and the scaling law for the inner region of the turbulent
boundary layer should coincide. The problem is to establish a
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FIG. 1. The data of Nagib, and Hites and Naguib in the original
semi-logarithmic coordinates. Open symbols correspond to the data
and Nagib and Hites, the closed ones to the data of Naguib. (Repro-
duced with permission from Ref. 6, copyright 1995.)
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correspondence between the well-defined Re of pipe flow and
the ill-defined quantity Reu.

If such a correspondence does exist, then with a redefined
Reynolds number of the boundary layer Re the scaling law (2)
should be valid for the boundary layer. Therefore two Reyn-
olds numbers for zero-pressure-gradient turbulent boundary

layer were introduced, ReBL
(1) and ReBL

(2), obtained by processing
experimental data in the following way:

A 5
1

Î3
ln ReBL

~1! 1
5
2

, a 5
3

2 ln ReBL
~2! [3]

The question is whether ln ReBL
(1) and ln ReBL

(2) are close; the
results are presented in Table 2.

As we can see, the logarithms of ReBL
(1) and ReBL

(2) are close.
(Only the logarithms should be compared because the small
parameter of the theory is 1yln Re.) Therefore, we introduce
the effective Reynolds number Re for the turbulent boundary
layer by the formula

ln Re 5
1
2

~ln ReBL
~1! 1 ln ReBL

~2! !, or Re 5 ÎReBL
~1! ReBL

~2!

[4]

as a basic Reynolds number. The ratio ReuyRe, i.e., the ratio of
the momentum thickness u of the boundary layer to the

Table 1. Parameters in the scaling laws

Reu A a B b B9

4,550 7.87 0.156 5.31 0.221 2.75
6,240 8.24 0.148 5.98 0.200 3.08
9,590 8.37 0.143 5.47 0.206 2.80

13,800 8.94 0.131 5.79 0.193 2.97
21,300 8.61 0.138 4.69 0.220 2.36
29,900 8.99 0.130 5.14 0.204 2.57
41,800 9.30 0.124 5.05 0.201 2.52
48,900 9.28 0.124 5.37 0.192 2.67

FIG. 2. The same data in double-logarithmic coordinates reveal two self-similar regions in the boundary layer separated by sharp boundaries.
(a) Reu 5 4550; (b) Reu 5 6240; (c) Reu 5 9590; (d) Reu 5 13,800; (e) Reu 5 21,300; ( f ) Reu 5 29,900; ( g ) Reu 5 41,800; (h) Reu 5 48,900.
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effective length scale, is of primary interest. Table 2 and Fig.
3 suggest that basically this ratio is a constant, approximately
equal to 1y3. The most important point is the very existence
of the effective length scale. Another point of interest is the
ratio of the free stream velocity U to the friction velocity up.
Table 2 and Fig. 4 show that basically Uyup is a linear function
of ln Re, as is the ratio #uyup in pipe flow. We should mention
that in the zero-pressure-gradient turbulent boundary layer
problem there is an uncontrollable parameter: the level of
turbulence in the outer flow. The scatter in the values of B
might be due to the influence of this parameter.

Conclusions

We have shown that the structure of the zero-pressure-
gradient boundary layer consists of two self-similar flows
having different scaling laws. Both laws reveal incomplete
similarity in a basic parameter. The introduction of the effec-
tive Reynolds number of the boundary layer allowed us to
establish a correspondence between the scaling law in the inner
part of the boundary layer and the scaling wall law in a pipe.
The experiment of Nagib and Hites, as well as earlier exper-
iments of Naguib, suggest that a properly defined effective

Reynolds number for boundary layer flow gives an appropriate
characterization of the flow regime. The ratio of the effective
length scale to the momentum thickness of the boundary layer
seems to be a constant, approximately equal to 3. The ratio of
the free stream velocity to the friction velocity is a linear
function of the logarithm of the effective Reynolds number.
The scaling relationship for the second regime can also be
represented in the form

f 5 B9SUy
n
Db

[5]

if we prefer the external velocity U to be the basic variable in
the second regime. The values of B9 are presented in Table 1.
The scatter remains practically the same, and may support our
opinion that it is due to the uncontrolled parameter.

It seems of interest to verify all these conclusions using other
experimental data.
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Table 2. Processed parameters

Reu ln ReBL
(1) ln ReBL

(2) ln Re
Reu

Re
U
up

4,550 9.59 9.30 9.45 0.36 26.5
6,240 10.13 9.94 10.03 0.27 27.4
9,590 10.47 10.16 10.32 0.32 28.3

13,800 11.45 11.10 11.31 0.17 28.8
21,300 10.88 10.59 10.74 0.46 31.2
29,900 11.50 11.25 11.37 0.34 32.0
41,800 12.08 11.78 11.93 0.27 32.6
48,900 12.07 11.75 11.91 0.33 33.2

FIG. 3. The ratio ReuyRe is basically constant.

FIG. 4. The ratio Uyup is basically a linear function of ln Re.

Applied Mathematics: Barenblatt et al. Proc. Natl. Acad. Sci. USA 94 (1997) 7819


